Direct numerical simulation of turbulent open channel flow: Streamwise turbulence intensity scaling and its relation to large-scale coherent motions

Christian Bauer¹, Yoshiyuki Sakai² and Markus Uhlmann³ christian.bauer@dlr.de

Institute of Aerodynamics and Flow Technology, German Aerospace Center, Bunsenstraße 10, 37073 Göttingen, Germany ² TUM School of Engineering and Design, Technical University of Munich, Arcisstraße 21, 80333 München, Germany ³ Institute for Hydromechanics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany

INTRODUCTION & METHODOLOGY

The well-known failure of wall-scaling of the streamwise turbulent intensity in closed channel flows

TURBULENCE INTENSITY SCALING

Streamwise turbulence intensity in OCF appears to scale with the bulk velocity \mathbf{u}_b

(CCF) is associated with the appearance of very-large-scale motions (VLSMs [2]). In turbulent open channel flow (OCF), VLSMs are larger, more energetic and appear at lower Reynolds number than in CCF [3, 4, 5]. Moreover, VLSMs in OCF are related so so-called super-streamwise vortices (SSV [6]), which are statistically difficult to capture. Thus, to investigate the scaling of turbulence intensities and its relation to underlying coherent structures in OCF, we carried out direct numerical simulations (DNSs) of both OCF and CCF of friction Reynolds numbers up to $\text{Re}_{\tau} \approx 900$ in large computational domains $(Lx/h \times L_z/h = 12\pi \times 4\pi)$. We are solving the incompressible Navier Stokes equations

$$\begin{aligned} \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \nabla p &= \frac{1}{Re} \nabla^2 \vec{u}, \\ \nabla \cdot \vec{u} &= 0, \end{aligned}$$

in terms of their vertical velocity/vorticity formulation discretised on a Chebyshev-Gauss-Lobatto grid [3]. The method incorporates a direct Poisson solver involving 2D FFTs and a MPI parallelised algorithm. The flow geometry is plane channel with with periodic boundaries in stream- and spanwise direction and either no-slip walls at bottom and top (CCF) or one no-slip boundary at the bottom and a free-slip boundary at the top (OCF).

Both OCF and CCF turbulence statistics data sets are available online [1].

SIMULATION CASES

O200 O400 O600 O900L4 O900L8 O900L12 Case C400 C600 C900 C200

(a,b) Turbulence intensities normalized by u_b as function of the distance from the wall y/h for OCF (a) and CCF (b): ---, u_{rms} ; – , v_{rms} ; – , w_{rms} . Solid lines, $\operatorname{Re}_{\tau} \approx 200$; dashed lines, $\operatorname{Re}_{\tau} \approx$ 400; dashed-dotted lines, $\operatorname{Re}_{\tau} \approx 600$; dotted lines, $\operatorname{Re}_{\tau} \approx 900$. The insets show a zoom for the streamwise turbulence intensity component. The symbols (*) in (b) indicate a profile from OCF measurements by [5] at $\text{Re}_{\tau} = 2407$. The gray lines in (d) indicate CCF DNS data at $\text{Re}_{\tau} = 2003$ (---, [2]), $\text{Re}_{\tau} = 5186$ (---, [7]), $\operatorname{Re}_{\tau} = 10049$ (---, [8]).

DLR

(c) Areas between OCF and CCF turbulence intensities normalized with the friction velocity,

$$a_{i} = \int_{y=0}^{h} u_{i,rms}^{O} \,\mathrm{d}y / (u_{\tau}^{O} h^{O}) - \int_{y=0}^{h} u_{i,rms}^{C} \,\mathrm{d}y / (u_{\tau}^{C} h^{C}),$$

where $u_{i,rms}^{O}$ and $u_{i,rms}^{C}$ denote the *i*-component of the OCF and CCF turbulence intensity, respectively. •, a_x ; •, a_y ; •, a_z . The blue line indicates the linear scaling law $a_x = 0.0208 + 7 \cdot 10^{-5} \text{Re}_{\tau}$.

$Re_{ au}$	200	399	596	899	895	894	200	397	593	890
Re_b	3170	6969	11 047	17512	17 512	17 512	3170	6969	11 047	17512
L_x/h	12π	12π	12π	4π	8π	12π	12π	12π	12π	12π
L_z/h	4π	4π	4π	2π	4π	4π	4π	4π	4π	4π
N_x	768	1536	1536	1536	2048	3072	768	1536	2048	3072
N_y	129	193	257	385	385	385	129	193	257	385
N_z	512	1024	1536	1024	2048	2048	512	1024	1536	2048
Δx^+	9.8	9.8	14.6	7.4	11.0	11.0	9.8	9.8	14.6	11.0
Δz^+	4.9	4.9	4.8	5.5	5.5	5.5	4.9	4.9	4.8	5.5
Δy_{max}^+	2.5	3.3	3.7	3.7	3.7	3.7	4.9	6.5	7.3	7.3
$\Delta T u_b/h$	8660	1925	1460	417	570	1054	8600	3260	1757	1013
$\Delta T u_{ au}^2 / u$	109 700	43 900	46 980	19 080	26 100	44 700	108 200	73730	55 960	45 820

REFERENCES

- [1] Data available under ifh.kit.edu/dns_data/channel/ and DOI 10.4121/88678f02-2a34-4452-8534-6361fc34d06b Hoyas S. and Jiménez J. (2006), Phys. Fluids, vol. 18, 11702

3

2

- Bauer C. (2015), Master's thesis, KIT, Karlsruhe, Germany Pinelli M., Herlina H., Wissink J.G. and Uhlmann, M. (2022), J. Fluid Mech., vol. 933, A49 Duan Y., Chen Q., Li D. and Zhong Q. (2020), J. Fluid Mech., vol. 892, A3 Zhong Q., Chen Q., Wang H., Li D. and Wang X. (2016), Water Resour. Res., vol. 52(5), 3563–3578 Lee M. and Moser R. D. (2015), J. Fluid Mech., vol. 774, 395–415
- Oberlack M., Hoyas S., Kraheberger S. V., Alcántara-Ávila F. and Laux J. (2022), Phys. Rev. Lett., vol. 128, 024502

The data presented here suggests that a_y and a_z settle at a constant value for higher Reynolds numbers, while a_x increases linearly.

SUPER-STREAMWISE VORTICES

SSV extracted from two-point correlations of the streamfunction of the streamwise averaged cross-sectional velocity components, $R_{\psi\psi}(\Delta y, \Delta z, y_0) = \langle \psi_{\langle v \rangle_x \langle w \rangle_x}(y_0, z) \psi_{\langle v \rangle_x \langle w \rangle_x}(y_0 + \Delta y, z + \Delta z) \rangle_{zN}$ where $\langle \cdot \rangle_{zN}$ represents averaging in z-direction as well as over N = 50 snapshots and $\psi_{\langle v \rangle_x \langle w \rangle_x}(y,z) = \int_{\hat{y}=0}^y \langle w \rangle_x(\hat{y},z) \,\mathrm{d}\hat{y} - \int_{\hat{z}=0}^z \langle v \rangle_x(0,\hat{z}) \,\mathrm{d}\hat{z}.$

VERY-LARGE-SCALE MOTIONS

OCF / CCF

